GenSo-FDSS: a neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data

نویسندگان

  • Whye Loon Tung
  • Hiok Chai Quek
چکیده

OBJECTIVE Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood, representing nearly one third of all pediatric cancers. Currently, the treatment of pediatric ALL is centered on tailoring the intensity of the therapy applied to a patient's risk of relapse, which is linked to the type of leukemia the patient has. Hence, accurate and correct diagnosis of the various leukemia subtypes becomes an important first step in the treatment process. Recently, gene expression profiling using DNA microarrays has been shown to be a viable and accurate diagnostic tool to identify the known prognostically important ALL subtypes. Thus, there is currently a huge interest in developing autonomous classification systems for cancer diagnosis using gene expression data. This is to achieve an unbiased analysis of the data and also partly to handle the large amount of genetic information extracted from the DNA microarrays. METHODOLOGY Generally, existing medical decision support systems (DSS) for cancer classification and diagnosis are based on traditional statistical methods such as Bayesian decision theory and machine learning models such as neural networks (NN) and support vector machine (SVM). Though high accuracies have been reported for these systems, they fall short on certain critical areas. These included (a) being able to present the extracted knowledge and explain the computed solutions to the users; (b) having a logical deduction process that is similar and intuitive to the human reasoning process; and (c) flexible enough to incorporate new knowledge without running the risk of eroding old but valid information. On the other hand, a neural fuzzy system, which is synthesized to emulate the human ability to learn and reason in the presence of imprecise and incomplete information, has the ability to overcome the above-mentioned shortcomings. However, existing neural fuzzy systems have their own limitations when used in the design and implementation of DSS. Hence, this paper proposed the use of a novel neural fuzzy system: the generic self-organising fuzzy neural network (GenSoFNN) with truth-value restriction (TVR) fuzzy inference, as a fuzzy DSS (denoted as GenSo-FDSS) for the classification of ALL subtypes using gene expression data. RESULTS AND CONCLUSION The performance of the GenSo-FDSS system is encouraging when benchmarked against those of NN, SVM and the K-nearest neighbor (K-NN) classifier. On average, a classification rate of above 90% has been achieved using the GenSo-FDSS system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Risk Analysis in E-commerce via Fuzzy Logic

This paper describes the development of a fuzzy decision support system (FDSS) for the assessment of risk in E-commerce (EC) development. A Web-based prototype FDSS is suggested to assist EC project managers in identifying potential EC risk factors and the corresponding project risks. A risk analysis model for EC development using a fuzzy set approach is proposed and incorporated into the FDSS....

متن کامل

Fuzzy decision support system for risk analysis in e-commerce development

This paper describes the development of a fuzzy decision support system (FDSS) for the assessment of risk in e-commerce (EC) development. A Web-based prototype FDSS is designed and developed to assist EC project managers in identifying potential EC risk factors and the corresponding project risks. A risk analysis model for EC development using a fuzzy set approach is proposed and incorporated i...

متن کامل

Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods

Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artificial intelligence in medicine

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2005